United States Patent

US009448915B2

(12) (10) Patent No.: US 9,448,915 B2
Brown et al. 45) Date of Patent: Sep. 20, 2016
(54) MODULAR SCRIPT DESIGNER FOR NEXT 7,343,551 B1* 3/2008 Bourdev ... 715/224
GENERATION TESTING SYSTEM 7,624,380 B2* 11/2009 Okada GO6F 11/3684
714/33
3k
(75) Inventors: Julian M. Brown, East Dulwich (GB); 7,685,576 B2 3/2010 Hartmann GOGK ;}/73/?(%5‘
Peter J. Smith, Greenwich (GB); 7,743,090 B1* 6/2010 Gibson et al. 709/202
Stephen M. Williams, Lymm (GB); 7,823,138 B2* 10/2010 Arguelles GOG6F 9/5027
Jason A. Steele, Wimbledon (GB) 714/100
8,306,195 B2* 11/2012 Gardnerc..... GOGF 8/34
. 379/88.08
(73) Assignee: Accepture Global Services Limited, 8,365,164 B1* 1/2013 Morgenstern GO6F 8/61
Dublin (IE) 717/108
8,543,981 B2* 9/2013 Ambichl GOG6F 11/368
(*) Notice: Subject to any disclaimer, the term of this 717/114
patent is extended or adjusted under 35 8,543,984 B2* 9/2013 Ambichl GOG6F 11/3684
717/100
U.S.C. 154(b) by 436 days. 2003/0110472 AL* 6/2003 Alloing et al. 717/122
2003/0236577 Al* 12/2003 Clinton GOG6F 8/51
(21) Appl. No.: 13/444,546 700/10
2004/0255275 Al* 12/2004 Czerwonka 717/124
(22) Filed: Apr. 11, 2012 2005/0021289 Al* 1/2005 Robertson et al. 702/182
2005/0022194 Al* 1/2005 Weir et al. 718/100
; ot 2006/0143533 Al* 6/2006 Dresser et al. 714/38
(65) Prior Publication Data 2006/0248504 A1* 11/2006 Hughes GOGF 11/3664
US 2012/0266136 Al Oct. 18, 2012 717/101
2006/0253742 Al* 112006 Elenburg et al. 714/38
Lo 2008/0086543 Al* 4/2008 Carpenter G06Q 30/0282
Related U.S. Application Data 709/219
(60) Provisional application No. 61/475,057, filed on Apr. (Continued)
13, 2011. OTHER PUBLICATIONS
(51) Int.CL Sun Microsystems, “The Benefits of Modular Programming,” 2007,
GOGF 9/44 (2006.01) pp. 1-11.* .
GOGF 11/00 (2006.01) (Continued)
(52) gos6FCil/36 (2006.01) Primary Examiner — Thuy Dao
CPC ... GOGF 11/3664 (2013.01); GO6F 113672 /%) Attorney, Agent, or Firm — Brinks Gilson & Lione
(2013.01); GOGF 11/3684 (2013.01) (57) ABSTRACT
(58) Field of Classification Search A method fqr mod}llar script design inqludg:s recei\{ing, at a
CPC ... GO6F 11/3684; GOGF 11/3672; GO6F modular script designer component, script information from
11/3668 a user, generating a list of suggested modules based on the
See application file for complete search histo script information, and receiving, at the modular script
Pp P ry. designer component, a selection of a next module from the
. user. The selection of the next module includes a selection
(56) References Cited of the next module from among the list of the suggested

U.S. PATENT DOCUMENTS

5,629,878 A 5/1997 Kobrosly

modules or a request for a new module. If the selection of
the next module includes the request for the new module, the
method further includes generating the new module.

6,378,088 B1* 4/2002 Monganc.coccoeeveen 714/39 15 Claims, 16 Drawing Sheets
400
3wy e 245
‘\n\ kN ‘\'\
Test Planning Tast Proparation Test Exscution

Wi

Desigring New
Seripts

Abecating Tast Dats
w2

4 Cptimizing
Regression Pack

Execuding Manusd
B Tests

)

W Assigrunes

234 .
~ Regowrcing

Preparng Test Dals

@8 Dewloping
Agtomaied Tests

26 Execuling
Agtomaisgd Tosls
Defect Managerment

Wark Assigrrment 5

Rapoding

US 9,448,915 B2

Page 2
(56) References Cited 2013/0104106 Al* 4/2013 Brown et al.cc......... 717/124
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
2009/0217302 Al* /2009 Grechanik et al. 719320 - B- G Schofield , "A programming tool fo case modular
2010/0229155 Al* 9/2010 Adiyapatham et al. ... 717/124 ~ Programming with C++” IEEE 2011, pp. 1.6
2011/0035629 Al* 2/2011 Noller et al. 714/38.14 Stephen Schuman , “Toward modular programming in high-level
2011/0088014 Al* 4/2011 Becker et al. ..cc.cc.o....... 717/125 languages,” IBM Scientific Center, 1974, pp. 1-12.*
2011/0321013 Al* 12/2011 Raunstien GO6F 11/36 Australian Office Action dated Dec. 14, 2012 for co-pending Aus-
717/125 tralian Patent Application No. 2012202093.

2012/0151448 Al* 6/2012 Becker et al. 717/125 Australian Office Action dated Aug. 9, 2012 for co-pending Aus-
2012/0174061 Al* 7/2012 McCollum et al. 717/106 tralian Patent Application No. 2012202093.
2013/0074043 AL* 3/2013 Fu .ocooovrrioerrrrrrnn. GOGF 11/3684

717/125 * cited by examiner

US 9,448,915 B2

Sheet 1 of 16

Sep. 20, 2016

U.S. Patent

Y Y A Y . s, A L

saleueyy Apend
oni”’ | EUoIEY WE

{
4

. s

L 'Ol

| (Sy + I YenIsg TOS)
: 80 LON

BI04 Bugsodsy

.

561 g AEnT 44

BB

wswsbeuepy
108180

- A0 |

Biiis iaiv]]
uoBnoeX3

..,M di0 m

SIBIRPY
A,

U
A

| aiD | 18] mea@ weysy i
BuRge iddng ejeQ

Y

e
w .» M.\J

mufiisa
g Jepnpopy

m.wv ’ \ - % N M

il 9it
JBIONU0D Jebeuep
HELIO] pewubissy

Ny

et}
maﬁmmw 188]

Ry 3 UopezgLIolg

dopisaq peyiun

i Zht

W\JM
0

g

g

=

My
0z

3

g}

80t

vl

"

M3

US 9,448,915 B2

¢ "Old

Sheet 2 of 16

Sep. 20, 2016

35 1]

0¥ Buniodey

81581 paauony
Buidojess o7

wswebeuep pasg

81681 DRIy
Bugroexy B

Bumnosey

meQ 159), Busedalg

Bik

fenueyy Bupnosxy

W vmsssboy
Bupmundoy v

siduog R %wm
aan Buubisen ,

£

Beq] sy Bugeopy

' % ;Q@mﬁﬁagsﬁv 3%3*?3&

uonnoex- 1884 voneiedald 1884 Buriugye 1581

U.S. Patent

™ ™ 2

a0z i Z07

Qi

US 9,448,915 B2

Sheet 3 of 16

Sep. 20, 2016

U.S. Patent

j00§ uswiadeueiy Yo T

JBGIO0L UORNIONT 1501

s

jeu0d Suipoday

Jofeuepy wawudissy
'§ UOneZIIIoNY

urey) Ajddng ejeq 1s9],

Jaudisaq 19L0s Jenpon

J3jj0u0Y uoRRwOINY

jo0 Suuuryd 1591

US 9,448,915 B2

Sheet 4 of 16

Sep. 20, 2016

U.S. Patent

;&%&

¥ Oid

22

A5G

fiEE

FE:N

BT AnEY

¥

A

axmw SR ﬁix
HEUIN
E's
k3

ey mm

A

FIF
v

By
IS

WA LSARENS A

ey

WALISAS HALNNOTD

£ B P S

U.S. Patent Sep. 20, 2016 Sheet 5 of 16 US 9,448,915 B2

51
R

o)

Crpany Surisd

cos PR »
5 - 7 i

WView Legaoy Y - " ,
Ktans w e Clore Soript

: S
oraale New
Serint

¥ 5
Bdociuley

bt

53 ’; - ""‘\){ * * '

Boript Detalls

Ba3 "‘\}\{ ¥ g ““\-,3”.{ %

f‘}{.‘:&‘i;}?‘ FO S 1 ﬁ»pm&v& ﬁﬁjﬁ%ﬁf

FIG. &

U.S. Patent

823

My

Sep. 20, 2016

Sheet

Chpany Borip
Designer

w«as‘aﬁ &3 browse

Y

o
... Sorpt? -~

for ae
- -

Browse Tesl Beaih by

LabPlan

504
oy

Beleat
Seript

bt do youl

_want o do with the
| OECHE? /

suript details

6 of 16

H10

%&ﬁﬁi to

cresie & sunpt?

e R P WanE 1Y _—
S 8 SOrEE T e

&3&

ﬁw“ﬁk;au want 1

g @ sonpt?
“na i ,M

Doy want 10 .,
~yiaw §f§€;d€3‘y SIS T

B41 Ji\
..M””f){}ﬂ‘& Ever ROri)

have st&ps?
View sleps |

B

y M“‘M\,%
Aaded the staps
o soript?

E Enter soript aame %4»

'

Erter soripd detalls and
pra-recrdsiteay

¥

Add modules

ERR ™

US 9,448,915 B2

U.S. Patent Sep. 20, 2016 Sheet 7 of 16 US 9,448,915 B2

N/ 3o you .
.......... ’ Wéﬁ”&l%{? {'}QW AT < have editing
>, seript? N

FE2 31 721 o

Yoy ¥ ey ¥ My ¥ S,
Raview Revisw
as olerg % Poar

Edit soript Lanceal

Fa3
Ny
Swve and Closs
seript

FIG. 7

U.S. Patent Sep. 20, 2016 Sheet 8 of 16
801 220
o \ 830
| {:m;\\ Can youN N b fga“ .
800 you use 5 search for you use 5

sugnesied

o a2y

Ngradute?

fweouriie
vl d

{Erer sovrch detuiis]

'

822 ,,,,,,,,,,
Y St
N
Bt ST T 13 a1 £ - S L
B3
N~ gt ;Y ‘
i :
S FREs: :
14 ‘ N
o ¥
¥ N

Edi raoduly

US 9,448,915 B2

Croaaia
& now

frecchadis

Sasbrrtih e

arusiher

g information

K"\ » BEE
Ermter
raerchidie - o Sa?s“vfﬁs
FLEnE g1a | hargEe 2
¥ ?‘V 7
813 ;
AT J NSO
Akl o
soript
Cancel
Big
¥ R X wy
sied o add Enter soript inputd | S0

pnduia?

FIG. 8

U.S. Patent Sep. 20, 2016 Sheet 9 of 16 US 9,448,915 B2

G0z
AT

Erler tpason
for no eview

o Doess the soript ™
o naad reviewing?

S3

ny

Erder
FRr e

903 904

Ay
Fi¥als)

stiachment

- Adachrnanis
ragutred?

0 R thig ™
e, BOHEE?

Submit
Soript

US 9,448,915 B2

Sheet 10 of 16

Sep. 20, 2016

U.S. Patent

0L 'Ol

US 9,448,915 B2

Sheet 11 of 16

Sep. 20, 2016

U.S. Patent

ARTE

€A%

it

Bhid

PEEL
78

US 9,448,915 B2

Sheet 12 of 16

Sep. 20, 2016

U.S. Patent

iz

Zh

» BEEL

»

3

Zied

U.S. Patent Sep. 20, 2016 Sheet 13 of 16 US 9,448,915 B2

1300

US 9,448,915 B2

Sheet 14 of 16

Sep. 20, 2016

U.S. Patent

vl Old

jouy Jonsag

SUIG)

g sanan
eV FAIG ,wmﬁ_ ?@mwmx 2100

.mv.w.w.m m M
e

g 2

RGN SRR Saliaug] |
§75T sseupng 5473 o mmw%sm I LEBUBNG

HIFT Jahey nuundur) ssausng

L OFIPY semmdogn | | TP swoundwanyn |

BEHT J8A0T URERIURS Y

GO{IR M U IR
pue Funddoy uondesg Aunaes

SOFL Bumng ssoun

Bunsa § UGIRIBUAY IXBN

E3 g2

By

E%Y C.,, 2y

Maw& FaE: 8 Ziwt

401

US 9,448,915 B2

Sheet 15 of 16

Sep. 20, 2016

U.S. Patent

Gl Ol

Hpaeg ooy

» 0P

ey Supsag

PR 1y saniang eeg

FFET vempmn/uutdipyg veg

THET epIatig B8

PFY seheymeq

Fii 29

Gy agsany meg

Huppes |

PE5T sopold

| EY

vontsaduorag w W

TEST iy umieaBay | |

Ty %ﬁwﬁmmﬁ

BYT apdey uniseBany

TET uonespuagny

Budany
AU

3y
PIET ssauisng

SAMAN

SBANIBG
TET g

pewy

BYEY uonerLmInY

FTFT whrrsusundue) siaupng

TEGT wpgoad 4050

[

Buppedy
b i

doggsag
W pogun

Budieag
Fnpoy g

sefnag
FEHT wonnasmy

BYPT seduy uonEIusIg

TIET voneasumpy

HeGEORaIeS
pue Band@loy ‘uopdamy Aumnoeg

Bagnd) ssoun

SovE

BUISe] UDNRISUSG JOON

E

1

peo
193]

mee g

sobnuep
wekng

5

.,t)r

0%

M\/

,

Zovi zovt

f/

@w H

L4

US 9,448,915 B2

Sheet 16 of 16

Sep. 20, 2016

U.S. Patent

8] "ol

FILL

¥

BYT oo wowslomiy pamg

WY muog Supoday

o

i
‘mﬁ%mmm%

M} HASN

BIT SRon SOnvIEhy

" sl peluBiasy I COREREHD

w
|
ST weun Agdog wEq eg w
|
w

WL IR00) HORNISNG 198

T)

F

I RN

*:

}

oo
iad
&y
i% gt
o
%

oo e

OMISS I
Wi ey weog enon m DRSS AN
O o Dusnmg ey w py
k'3
By &% ¥ ¥iF fi%i 2
O 4 M MY SHD
% [ILISASHNS AONEH

w5

WRLEAS HRLGNOS

£ e G b
£ G5 b §§

US 9,448,915 B2

1
MODULAR SCRIPT DESIGNER FOR NEXT
GENERATION TESTING SYSTEM

CLAIM OF PRIORITY

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 61/475,057 filed Apr. 13, 2011,
which is incorporated by reference in its entirety herein.

BACKGROUND OF THE INVENTION

1. Technical Field

This disclosure relates to software testing, and in particu-
lar, this disclosure relates to an integrated platform for
developing, debugging, and executing tests to insure the
integrity and functionality of software systems.

2. Background

The development of computer software involves a rigor-
ous testing process to insure that the software functions as
intended. During the testing process, testers write various
test scripts or software test modules for performing different
types of tests necessary to ensure that the computer software
is functioning as designed. The testers also set up and run the
test scripts while tracking the results, and report the test
result to appropriate personnel. This process is inefficient
and time consuming, and requires significant tester involve-
ment.

Further, as businesses continue to rely on computer soft-
ware and complex software packages, an increasing number
ot highly complex computer software has been developed to
meet business demands. Due to the increased complexity
and scale, such software programs require a large-scale
testing process involving far more testers and test scripts
than were required previously. Such increases are related to
organizations centralizing their testing and moving to an
outsourced testing model. Traditionally testing was ‘embed-
ded’ into the software development life cycle for each
project, but now central ‘discrete’ testing functions exist
within organizations, which test across multiple projects and
releases.

Testing tools have been developed to assist the testers in
performing the various steps of the testing process. How-
ever, existing testing tools are not able to provide the
required functionality and efficiency to overcome the chal-
lenges posed by the large-scale testing process.

Testing of various products and/or software products has
increased in complexity and scope. In the past, relatively
small groups of designers and developers, perhaps 10 to 30
in number, developed various tests for testing and verifying
the function of software modules or code segments. Such
small groups of individuals have been manageable. How-
ever, as the number of individuals contributing to the project
becomes large, redundancy and complexity increase, which
contributes to increased cost and an increase in the number
of errors. Therefore, a need exists to address the above.

SUMMARY

A method for modular script design includes receiving, at
a modular script designer component, script information for
a modular script from a user, generating a list of suggested
modules based on the script information, and receiving, at
the modular script designer component, a selection of a next
module from the user. The selection of the next module
includes a selection of the next module from among the list
of the suggested modules or a request for a new module. If

10

30

40

45

55

2

the selection of the next module includes the request for the
new module, the method further includes generating the new
module.

Other embodiments of systems, methods, features, and
their corresponding advantages will be, or will become,
apparent to one with skill in the art upon examination of the
following figures and detailed description. It is intended that
all such additional systems, methods, features, and advan-
tages be included within this description, be within the scope
of the invention, and be protected by the following claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The system may be better understood with reference to
the following drawings and the description, in addition to the
presentation sheets included in the appendix, which is incor-
porated herein in its entirety. The components in the figures
are not necessarily to scale, emphasis instead being placed
upon illustrating the principles of the invention. Moreover,
in the figures, like-referenced numerals designate corre-
sponding parts throughout the different views.

FIG. 1 shows a next generation testing (“NGT”) system.

FIG. 2 is a diagram showing the overall testing process
using the NGT system.

FIG. 3 shows a diagram of key components of the NGT
system.

FIG. 4 is a high-level hardware block diagram of one
embodiment of the NGT system.

FIG. 5 shows a logical diagram of an embodiment of a
modular script designer (“MSD”).

FIGS. 6-9 show logical diagrams of a user interface of an
embodiment of the MSD.

FIG. 10 shows a logical diagram of a user interface of an
embodiment of the modular script designer.

FIGS. 11-13 show diagrams of various features of an
embodiment of the MSD.

FIG. 14 shows a conceptual diagram of an embodiment of
the NGT system.

FIG. 15 shows a logical diagram of an embodiment of the
NGT system.

FIG. 16 is a high-level hardware block diagram of another
embodiment of the NGT system.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

As shown in FIG. 1, a system 100 for next generation
testing (“NGT system™) using automation controller pro-
vides a platform allowing increased efficiency and function-
ality for testing computer software. The system 100 may be
embodied as a system cooperating with computer hardware
components and/or as a computer-implemented method.

The NGT system 100 may include a unified desktop 102
which includes a test planning tool 104, a modular script
designer 106, an execution toolbar 108, and a defect man-
agement component 110. The NGT system 100 may also
include a prioritization and assignment manager 112, an
automation controller 114, a data supply chain controller
116, an integration layer 118, and a reporting portal 120. The
integration layer may link to an existing testing tool 130,
such as Hewlett Packard’s HP Quality Center™, an existing
test management and quality management tool 140, such as
IBM Rational Quality Manager, and a database or server
150, such as a Microsoft SQL Server with SQL Integration
Services and SQL Analysis Services. The NGT may also
include virtual machines, 160 which interface with the
automation controller 114. The virtual machines 160 may

US 9,448,915 B2

3

run a functional test automation tool, such as functional and
regression test software 162, such as Hewlett Packard’s HP
QuickTest Professional (QTP). Other types of testing tools
may also be used.

The NGT system 100 provides a suite of “wrapper” tools
for a testing process. The NGT system 100 may consist of
a set of tools that integrate with existing test tools, and
extend their functionality. The NGT system 100 allows
functional testing at a larger scale by delivering tools to
reduce the testing effort and increase the quality of testing.
The NGT system 100 may reduce testing effort by more than
20% as compared to existing testing tools 130, such as HP
Quality Center™. Further the NGT system 100 may be
extendible for use across multiple clients. The NGT system
100 may be built as an internal set of assets for use across
clients and may be designed to allow client specific func-
tionality to be handled through configuration and extension.

FIG. 2 is a diagram showing an overall testing process
using the NGT system 100. The testing process may include
a test planning stage 202, test preparation stage 204, and test
execution stage 206. The NGT system 100 may provide
increased efficiency and functionality across all areas of
testing. Transitioning from the test planning stage 202 to the
test preparation stage 204, and from the test preparation
stage 204 to the test execution state 206 may involve work
assignment 208. The test planning stage 202 may include
scoping 210, estimating 212 and resourcing 214. The test
preparation stage 204 may include designing new scripts
222, optimizing regression pack 224, preparing test data
226, developing and developing automated tests 228. The
test execution stage 206 may include allocating test data
232, executing manual tests 234, executing automated tests
236, and defect management 238. The next generation
testing system 100 may also include reporting capability 240
throughout all stages of the testing process.

FIG. 3 shows a diagram of key components of the NGT
system 100. The key components may include a test plan-
ning tool 104, a modular script designer 106, a prioritization
assignment manager 112, a test execution toolbar 108, an
automation controller 114, a test data supply chain 116, a
reporting portal 120, and defect management tool 110.

FIG. 4 is a high-level hardware block diagram of one
embodiment of the NGT system 100. The NGT system 100
may include a computer system 402, which may be a
personal computer and may include various hardware com-
ponents, such as RAM 414, ROM 416, hard disk storage
418, cache memory 420, database storage 422, and the like
(also referred to as “memory subsystem 426). The com-
puter 402 may include any suitable processing device 428,
such as a computer, microprocessor, RISC processor (re-
duced instruction set computer), CISC processor (complex
instruction set computer), mainframe computer, work sta-
tion, single-chip computer, distributed processor, server,
controller, micro-controller, discrete logic computer, and the
like, as is known in the art. For example, the processing
device 428 may be an Intel Core i7® microprocessor, x86
compatible microprocessor, or equivalent device, and may
be incorporated into a server, a personal computer, or any
suitable computing platform.

The memory subsystem 426 may include any suitable
storage components, such as RAM, EPROM (electrically
programmable ROM), flash memory, dynamic memory,
static memory, FIFO (first-in, first-out) memory, LIFO (last-
in, first-out) memory, circular memory, semiconductor
memory, bubble memory, buffer memory, disk memory,
optical memory, cache memory, and the like. Any suitable
form of memory may be used, whether fixed storage on a

25

30

35

40

45

50

4

magnetic medium, storage in a semiconductor device, or
remote storage accessible through a communication link. A
user or system interface 430 may be coupled to the computer
402 and may include various input devices 436, such as
switches selectable by the system manager and/or a key-
board. The user interface also may include suitable output
devices 440, such as an LCD display, a CRT, various LED
indicators, a printer, and/or a speech output device, as is
known in the art.

To facilitate communication between the computer 402
and external sources, a communication interface 442 may be
operatively coupled to the computer system. The commu-
nication interface 442 may be, for example, a local area
network, such as an Ethernet network, intranet, Internet, or
other suitable network 444. The communication interface
442 may also be connected to a public switched telephone
network (PSTN) 446 or POTS (plain old telephone system),
which may {facilitate communication via the Internet 444.
Any suitable commercially-available communication device
or network may be used.

Description of the modular script designer (“MSD”) 106
follows. MSD 106 combines a simple interface for devel-
oping scripts, or facilitating script creation, using a modular
approach along with an approvals framework. Modulariza-
tion is the process of grouping test steps into small modules
that describe a piece of functionality. These modules com-
bine together to form test scripts or cases. The MSD 106
provides intelligent module suggestions for developing test
scripts. Test scripts may include one or more modules. When
a module is added to a script, a list of likely ‘next modules’
is displayed to the user. Therefore, the MSD 106 may
improve knowledge management and decrease duplicated
efforts in creating modules. Users can also search for mod-
ules with an in-line search function.

The MSD 106 also allows for meta-tagging and indicating
parameters in the modules. Metadata is added to modules so
that the system can understand how and where the module
is used. Input and output parameters are specified to enable
re-use of modules and data-driven approaches. The MSD
106 also allows the specification of skills and pre-requisites
associated with a module. Skills are assigned to the tests so
that the system knows who will be able or qualified to
execute the script. Pre-requisites (including data) are speci-
fied to track the readiness of a test for execution. The MSD
106 also provides automated approvals workflow. A central-
ized workflow system is used to enable modules to be
approved or rejected. After a module is created or modified,
the approver is notified. The approver may approve the
module to be used in all scripts, for a subset of scripts, or for
a single script.

Description of the test execution toolbar 108 follows. The
test execution toolbar 108 may be a unified toolbar incor-
porating all of the tools that a tester requires. The test
execution toolbar 108 may provide in-line test execution.
Test scripts can be opened directly within the toolbar, which
saves room on a tester’s desktop and avoids certain key-
strokes, such as ALT-Tabbing, between screens. Defect
raising and screen capture may be part of the process. The
text execution toolbar 108 may also provide an embedded
approvals lists. All module/script approvals may be shown
in the toolbar, and an approver can quickly open the relevant
script/module for approval. The test execution toolbar 108
also allows quick access to all NGT tools. A quick launch bar
may be provided to enable the tester to quickly access all of
the NGT tools. The toolbar may also handle login manage-
ment for NGT. A user profile section is available to change
user information. The test execution toolbar 108 is also

US 9,448,915 B2

5

dockable with an auto-hide function. The test execution
toolbar 108 may be docked to the left hand side of the
screen, and it can be selected to be visible or auto-hide. An
extendable framework allows additional panels to be added
to the toolbar.

Description of the prioritization and assignment manager
(“PAM”) 112 follows. The PAM 112 provides a centralized
automated prioritization of test scripts with real-time assign-
ment logic. The PAM 112 provides configurable prioritiza-
tion factors. Test scripts are prioritized based on a central-
ized set of factors, and the factors can be configured
centrally to influence the entire test operation (for example,
to improve performance against contractual key perfor-
mance indicators (“KPIs™)). The PAM 112 further provides
a skill based assignment—it provides a pull, rather than
push, approach. Testers may click ‘Get Next’ via a user
interface to get assigned the next script to execute. The best
script is chosen in real-time based on weighted assignment
factors. Managers may control the skills as compared
against the skills of their team members. The PAM 112 may
also provide manager overrides. Managers are given a view
of the scripts planned for execution by their team. They are
able to change the factors of specific scripts (for example,
business priority) to re-prioritize the queue and force scripts
to be assigned to specific individuals. The PAM 112 may
also provide a pluggable framework for new factors. New
decision factors can be added by defining a new factor class.
The factor may be presented through the user interface and
can be weighted in the decision logic. This could be used to
enable advanced ‘Applied Statistic” decision models.

Description of the automation controller 114 follows. The
automation controller 114 may be an automation framework
for resilient off-line automation on a virtual farm, such as a
computing machine in a “cloud environment.” The automa-
tion controller 114 provides remote execution of test scripts.
An automation controller agent may run on virtual machines
(“VM’s”) to manage the execution of test scripts. A logging
framework is used to support the execution. The automation
controller 114 also may communicate with the PAM 112 to
get the next script. This allows the centralized factors to
apply to both manual and automated execution.

The automation controller 114 also provides intelligent
selection of modules to maximize the “return on investment”
or “ROI” associated with each test script that is run auto-
matically. The automation controller 150 selects for auto-
mation the test scripts that provide the greatest ROI collec-
tively. The choice whether to automate a particular test script
using the automation controller 150 may be based on the
ROI associated with the test script. For example, a particular
test script may be a test script that handles initial login by a
user. Because a test script that handles initial login by user
may be used by hundreds of different test scripts without
variation, this testing script provides a high ROI, and as
such, may be a good candidate for automation. The ROI
essentially is a measure of increased efficiency attained by
automation of the test script. A prioritization workflow aids
the automation team in assessing the next module to be
automated. The user interface allows the automation team to
‘check-in’ and ‘upgrade’ automated modules.

The automation controller 114 further provides modular
design and partial automation. Automation scripts may be
developed as modules, and each automation module may
have one or more manual modules mapped against it. Partial
automation enables rapid execution of automated parts of
scripts. Hssentially, the automation control 150 is used
where applicable to automate the execution of test scripts.

20

40

45

55

60

6

Description of the reporting portal 120 follows. The
reporting portal 120 provides an automated reporting capa-
bility accessible through a central on-line portal. The report-
ing portal 120 may include a full Microsoft™ Business
Intelligence (“BI”) suite. The solution makes use of SQL
Server Integration Services, SQL Server Analysis Services
and SQL Server Reporting Services, which are available
from Microsoft Corporation. A custom SQL Server Integra-
tion Services (SSIS) component directly communicates with
external testing tools 130 such as an HP Quality Center™
which is available from Hewlett-Packard Corporation.

The reporting portal 120 also includes an off-line data
warehouse to avoid testing tool degradation. An off-line data
warehouse may be maintained to avoid queries directly on
the external testing tool. A dimension based data model is
used for simplified reporting. Further, data is pre-aggregated
in a multidimensional online analytical processing (“MO-
LAP”) database to provide quick analysis. The reporting
portal 120 further provides cube-based metrics and KPIs
(key process indicators). Using SS Analysis Services, mea-
sures and targets may have been pre-defined, which can be
included into reports. PowerPivot, a spreadsheet add-in
available from Microsoft Corporation, allows data to be
quickly analyzed in spreadsheet programs, such as Micro-
soft Excel™ for ad-hoc reports. Further, the reporting portal
120 provides integration with solutions, such as Microsoft
SharePoint™. Where data from systems other than the HP
Quality Center™ is required (for example, financial/produc-
tion data), the solution can receive data from solutions, such
as Microsoft SharePoint™. The SSIS component allows the
solution to be easily extended to direct data sources where
required.

Description of the defect management tool 110 follows.
The defect management tool 110 may simplify the process
for raising, tracking and updating defects. The defect man-
agement tool 110 may provide a defect watch list. Toolbar
based list of defects with real-time Red, Amber or Green
(RAG) status indicators may be provided. Red status indi-
cates high risk or serious project issues, amber status indi-
cates medium risk, and green status indicates low risk. The
defect management tool 110 may allow quick access to full
information of the defects to see the latest status. The defect
management tool 110 may also provide in-line defect raising
with test history. While executing a test through the toolbar,
screenshots and test steps may be captured. When a defect
is raised, this information is pre-populated in the defect.
Screenshots and other attachments can be uploaded directly.
The defect management tool 110, also reduces “alt-tab”
operations. By including core defect management in the
toolbar, the defect management tool 110 is able to reduce the
need to “alt-tab” into an external testing system 130, such as
the HP Quality Center™. The defect management tool 110
also enables automated un-blocking of scripts to further
avoid time spent in the external testing system. The defect
management tool 110 further provides team based views.
Managers have a ‘team view’ to enable them to see the
defects currently impacting their team with the relevant size
and status.

Description of the test planning tool 104 follows. The test
planning tool 104 provides an intelligent interface for esti-
mating, planning, selecting regression and assigning prep
work. The test planning tool 104 provides assisted estima-
tion. A three stage process is used to provide estimation at
increasing levels of accuracy. Information is used from
previous testing releases to improve estimates. Pluggable
architecture for client-specific calculations may be used. The
test planning tool 104 also provides deconstruction of

US 9,448,915 B2

7

requirements into tests. The test planning tool 104 assists the
user in breaking down requirements into a manageable
number of tests. Collaborative working capabilities allow a
‘divide and conquer’ approach. The test planning tool 104
further provides resource forecasting by skill. Early fore-
sight of skills required to support the testing activities is
made possible, and graphical display of availability versus
demand may be presented on the user interface. The test
planning tool 104 further helps to shape the test organization
by promoting cross-skilling. The test planning tool 104 also
provides regression pack suggestions. Using a meta-data
driven approach, the system will suggest an appropriate
regression pack. Risk-based testing scores can be used to
size the pack accordingly.

Description of the test data supply chain 116 follows. The
test data supply chain 116 automates the demand manage-
ment and supply of test data. The test data supply chain 116
may provide a data catalogue. Data types are modeled and
stored in a database. The test data team can check data in and
out of the catalogue. Also, rules can be specified to enable
basic data mining. The test data supply chain 116 also
provides mapping data to test scripts. During preparation,
the data type required is selected against the script. Also,
using the modular script designer 106, data parameters can
be mapped directly to script parameters to allow automated
assignment at run-time. The test data supply chain 116
further provides monitoring of ‘stock levels’ and re-order-
ing. The test data supply chain 116 can monitor demand
versus capacity for all types of data, and as data gets “used’
by test scripts, the levels are updated. The test data supply
chain 116 can order additional data from the data team or via
an automated provision. The test data supply chain 116 may
also be integrated with the PAM 112. The stock levels can
be used during prioritization to avoid running scripts that do
not have available test data or where stock levels are low.

For example, if fifty specific test scripts require input data
type “A” and twenty-seven specific test scripts require input
data type “B,” the test data supply chain 116 organizes the
required data types for each script and provides the data to
the test script in a “just-in-time” manner to avoid redun-
dancy and reduce complexity. Further, such test data may
change throughout the lifecycle of the testing process based
on the results of a particular test. Accordingly, the test data
supply chain 116 tracks the required changes and updates the
data sets required for the corresponding test scripts so that as
the test scripts are being executed, up-to-date test data is
available to the test script.

The MSD 106 may provide the following functionalities:
Define New Script: The user is able to create a new test
script and enter key information about that script; Edit
Existing Script: The user is able to load, or load, an existing
script and edit the information/modules in that script; Select
Test Data: The user is able to select test data types from the
data catalogue to associate to the script; Search for Modules:
The user is able to search for existing modules; Top 10 Next
Modules: The MSD 106 may suggest the most likely next
modules, which may be ten modules or any other number of
modules, to the tester based on the existing scripts within the
repository; and Create New Module: The user is able to
design a new module when required.

The Create New Module may include the following
sub-functionalities: Define Test Steps: Test steps may be
captured against the module; Define Expected Results:
Expected Results may be captured against the Test Steps;
Define Input Variables: The tester may be able to define the
input variables for the module and include these as required
in the test steps/results; Define Output Variables: The tester

25

35

40

45

50

60

8

may be able to define the output variables for the module and
include these as required in the test steps/results.

The MSD 106 may further provide the following func-
tionalities: Map Module Input Variables: The Input of the
modules is mapped to the output of previous modules,
entered by the tester at run-time or mapped to a test data
field; Module Metadata: The MSD 106 allows additional
configurable metadata to be specified against each module;
Skill Capture: The tester is able to enter the skills required
to execute the test; Pre-Requisite Capture: The MSD 106
allows the tester to enter any required pre-requisites against
the script; Priority and Risk Capture: The user is able to enter
the business priority, likelihood of failure and impact of
failure against the test script.

MSD 106 may further provide functionalities, such as
allowing users to: clone test scripts, save scripts as drafts,
view legacy steps, easily re-order modules in the script,
mark modules as favorite, view favorite modules, submit
modules to module approvers, save modules as draft, define
source of input and output variable as a fixed value, mark
scripts as not requiring review, attach documents or images
to scripts, and cancel creation of a script. The MSD 106 may
also ensure no modules are created with the same name. The
MSD 106 may provide fewer, additional, or other function-
alities.

FIG. 5 shows a logical diagram of an embodiment of the
MSD 106. Using the MSD 106, a tester 501 may open or
access scripts 510 that have already been created. The MSD
106 also allows the tester 501 to clone or duplicate existing
scripts 520, by allowing the tester 501 to search for a script
using script IDs or by browsing a test plan database or a test
lab database, which are databases in which the test scripts
are stored. The MSD 106 may further allow the tester 501 to
view legacy steps 511, after the tester 501 opens a script 510.
The tester 501 can convert, using the MSD 106, a legacy
script to a next generation testing script by adding details
and modules to the legacy script. A legacy script is a script
that has not been modularized. The tester 501 may also view
legacy steps using the MSD 106 and convert the legacy steps
into modules, if such modules are not already present in the
legacy script.

The MSD 106 may further allow the tester 501 to create
new scripts 530. To create a new script 530 in the MSD 106,
the tester 501 may enter script details 531, including a
unique script name, a brief description of script capabilities
and skill details. Skill details may include the skills required
to execute the script successfully. At 532, the tester 501 may
specify, in the MSD 106, input and output variables for the
script, and review all data that the tester 501 inputted for the
script, select an approver for the script and attach any data
that the script may require. The tester 501 may submit the
script to a testing tool 533, such as the HP Quality Center™.

The MSD 106 also allows the tester 501 to input modules
into the test script. The MSD 106 may suggest to the tester
501 modules to be added to the script. At 534, the tester 501
may also use the MSD 106 to search for other modules to
add to the script, create a new module, edit existing modules,
or clone existing modules. The MSD 106 may also store the
tester’s 501 favorite modules. The MSD 106 may allow the
tester 501 to add selected, newly created, edited, or cloned
modules to the script. The tester 501 may optionally submit
a module 535 to an approver 504, who may be a peer
reviewer, such as a test lead. The approver 504 may provide
comments for the script and may approve the module 536 or
reject the module 537. If the approver 504 rejects the module
537, the approver 504 may distribute the module back to the
tester for editing 538, and the module may only be edited

US 9,448,915 B2

9

from the point where the module was submitted 535. A
rejected module is inactive, which means that the module
cannot be searched for and cannot be used. The tester 501
may edit the script 538 based on comments from the
approver 504. If the approver 504 accepts the module 536,
the module is marked as ready for test, which means the
module is ready for execution, and added to the script.

In a specific embodiment, the MSD 106 may provide the
following approval process for approving a newly created
module. When the tester 501 submits a module for approval,
the MSD 106 may set a status indicator of the module to
pending approval and alert an approver 504 to review the
module. The tester 501 may designate an individual to be the
approver 504, or the MSD 106 may select an approver 504
based on a role of the approver and skills required for the
module. When the approver 504 approves the module, the
MSD 106 may set the status indicator of the module to
approved for use and the module is then available for use in
other scripts and is searchable by users of the MSD 106. The
approver may also amend the module before approving the
module. When the approver 504 rejects a module, the MSD
106 may prompt the approver to enter a reason for rejection
and sets the status indicator of the module to rejected, and
alerts the tester that the approver rejected the module. The
tester 501 may edit or update the rejected module in the
MSD 106. The tester 501 may edit or update the rejected
module and submit the module for review again, or the tester
501 may remove the rejected module from the script, in
which case the MSD 106 sets the status indicator of the
rejected module to inactive or deletes the rejected module.

FIGS. 6, 7, 8 and 9 show a logical diagram of an
embodiment of the MSD 106. As shown in FIG. 6, the MSD
106 may prompt the user to login 601 and open the modular
script designer 602. Then, the MSD 106 may prompt the
user to choose whether to create a new script 610, open an
existing script 620, clone an existing script 630, or view
legacy steps 640. If the user chooses to create a script, the
MSD may prompt the user to enter script details and
pre-requisites 604 and add modules 605. If the user chooses
to open an existing script 620, the MSD 106 may prompt the
user to search for a script by script details 622 or browse a
test lab database or test plan database 623 and display
available scripts to the user. Then, the user may select a
script 624 in the MSD 106, and the MSD 106 may give the
user options as to what to do with the script 625, including
the options to open the script 626, export the script to an
external program 627 (such as Microsoft Excel, or another
program for viewing the script), or cancel the operation 606.
Ifthe user opens the script 626, the MSD 106 continues with
the script creation process 700, as shown in FIG. 7. If the
user chooses to clone a script 630, the MSD 106 may prompt
the user to enter script details 604 and add modules to the
script 605. The functional test automation tool 162 may store
scripts that have no steps or modules, for example, some
legacy scripts or scripts that include only script information,
but no modules. Thus, if the user chooses to view legacy
steps 640, the MSD 106 may determine whether the legacy
scripts have any steps 641 and allow the user to view
available legacy steps 642, add user selected legacy steps to
the script 643 or cancel the operation 606. If the user adds
steps to the script 643, the MSD 106 may prompt the user
to enter script details and pre-requisites 604 and add mod-
ules 605. After the user adds modules 605, the MSD 106
guides the user through the next steps in the script creation
process 800 (FIG. 8).

FIG. 7 shows a logical diagram of an embodiment of the
MSD 106 continued from FIG. 6. After the user opens the

10

15

20

25

30

40

45

50

55

60

65

10
script 626 in FIG. 6, the MSD 106 continues the script
creation process 700 and gives the user the option to edit the
script 710. If the user chooses to edit the script, the MSD 106
may determine whether the user has editing rights 720. If the
user has editing rights, the MSD 106 may allow the user to
edit the script 721, and continue with completing the script
creation process 900. If the user does not have editing rights,
the MSD 106 allows the user to cancel the operation 722.

FIG. 8 shows a logical diagram of an embodiment of the
MSD 106 continued from FIG. 6. After the user adds
modules to the script 605 in FIG. 6, the MSD 106 may guide
the user through the next steps in the script creation process
800. The MSD 106 may allow the user to use a suggested
module 801. If the user can use a suggested module 801, the
user may select a module 802 from suggested existing
modules, and the MSD 106 gives the user the option to edit
the module 803. If the user edits the module 804, the MSD
106 prompts the user to save changes 805 and submit the
module 806. The MSD 106 may also allow the user to cancel
changes 808. If the user does not edit the module at 803, the
MSD 106 prompts the user to determine whether to clone the
module 810. If the user clones the module 810, the MSD 106
prompts the user to enter a module name 811. If the user
chooses not to clone the module 810, then the MSD 106
prompts the user to add the module to the script 812. After
the module is added to the script 813, the MSD 106 gives the
user the option to add another module 814. If the user does
not add any other modules, the MSD 106 prompts the user
to enter script input/output information and continue with
completing the script creation process 900.

The MSD 106 may allow the user to search for a module
820 by prompting the user to enter search details 821,
perform the search 822 and display the search results to the
user. Then, the MSD 106 may allow the user to select a
module 802 from existing modules in the search results, and
give the user the option to edit the module 803.

The MSD 106 may also allow a user to use a favorite
module 830. The MSD 106 allows the user to select a
module 802 from existing modules and gives the user the
option to edit the module 803. If the user cannot use any
existing modules (e.g., a suggested module 801, a module
from search results 820, or a favorite module 830), the user
may use the MSD 106 to create a new module 831. After the
user creates a new module 831, the MSD 106 may prompt
the user to add the module to favorites 832. The user may
check a box 833 to add the module to favorites and then
submit the module 806. Alternatively, the user may submit
the module 806 without adding the module to favorites.
After the module is submitted 806, the MSD 106 may
prompt the user to cancel 808 or add the module to the script
812, add other modules 814, enter script input/output infor-
mation 815, and complete the script creation process 900.

FIG. 9 shows a logical diagram of an embodiment of the
MSD 106 continued from FIGS. 7 and 8. After a user edits
the script 721 or finishes adding modules to the script 814
and enters script input/output information 815, the MSD 106
may prompt the user to indicate whether the script needs
reviewing 901. If the user indicates that the script does not
need reviewing, the MSD 106 prompts the user to enter a
reason for no review 902, before allowing the user to
proceed. If the user indicates that the script does need
reviewing, the MSD 106 prompts the user to enter the name
of the approver 903. After the user enters script review
information, the MSD 106 prompts the user for required
attachments 904, and allows the user to add attachments 905
or proceed without adding attachments. The attachments
may include a screenshot, a file, or a document to show the

US 9,448,915 B2

11

results of the script. Then, the MSD 106 prompts the user to
save the script 906, and allows the user to complete steps for
saving the script 907. Then, the MSD 106 prompts the user
to submit the script 908, and gives the user the option to
complete steps for submitting the script 909 or close the
modular script designer 910 without submitting the script.

FIG. 10 is a logical diagram of a user interface of a
specific embodiment of the MSD 106. The MSD 106 may
allow the tester to quickly design new scripts based on an
existing repository of modules. Where a new module is
required, the tester may be able to create that module within
the MSD 106. Using the MSD 106, the tester may enter
information about the test and skills required to execute the
test 1004. The tester may select the type of test data from a
data catalogue 1006. The tester is also able to enter metadata
about the current module and set input parameters for the
module 1008. MSD 106 may also show an overview of the
current test script. The overview may show the modules
selected for the current test script 1010. New modules can be
created when required 1012 using the MSD 106, and the
tester is able to search for a specific module 1014. The MSD
106 may automatically also show the top five next modules,
which the tester is likely to use next 1016. Any other number
of possible next modules may be displayed. The likely next
modules are determined based on knowledge of the existing
tests. The MSD 106 may allow a tester to drag and drop
modules into the script 1018. The MSD 106 may also
display test step information for a testers’ reference 1020.

FIG. 11 shows a screen shot 1100 of an embodiment of the
MSD 106. The user interface may include a plurality of
screens, or tabs, including a Details tab 1102, a Prerequisites
tab 1104, a Scripting tab 1106 shown in more detail in FIG.
11, an Input/Output tab 1108, and a Finish tab 1110. The
plurality of screens, or tabs, may guide the user through the
script design process by displaying options and information
to user and prompting the user to input information to create
or design a script. For example, the user may begin on the
Details tab 1102 by clicking a File button to access and
choose from a drop down list of functions, including Open
Script, New Script, View Script, Clone Script or Saved
Drafts. The tester may also input, on the Details tab 1102,
key information about the script. The key information may
include script header 1114, a script name 1116, a description
of the script 1118, names and values of test attributes 1120,
skills required to complete script execution 1122, and a
requirement reference for the script. The user may select
required skills 1122 from a list of skills displayed on the
Design tab 1102. The required skills 1122 may later be used
to assign the scripts to relevant, or qualified, testers and
approvers. The Details tab 1102 may further include a Save
Draft button 1124, which the user may click to save the
script information entered. On the Prerequisites tab 1104, the
MSD 106 may display and allow the user to modify pre-
requisites for executing the script, which may include data
type, data comments and other prerequisites. Other embodi-
ments may include fewer, additional or alternative screens,
or tabs, to display script options and information to the user,
and to accept user input regarding scripts.

As shown in FIG. 12, the Scripting tab 1106 may display
to the user all modules that are in the test script, and allow
the user to add a module to the script by creating a new
module, editing an existing module, or cloning an existing
module. The user may also input data regarding a module,
including, for example, a module name 1202, a status of the
module 1204, a version of the module 1206, and a module
description 1208. The user interface may further display to

20

25

40

45

12

the user a plurality of options in panes, including suggested
modules 1210 to include in the script and the option to
search for modules 1212.

The user may select a module from the suggested modules
1210 by clicking and dragging a module of choice into a
Current Script field 1214. The user may input additional
information regarding the module, including components to
which the module is linked (pulled from a configuration
management database (CMDB) and any other metadata).
The user interface may display to the user other information
regarding the script, including for example, module steps
1216, test steps for each module step 1218, expected results
for each module step 1220, current script steps 1214, attri-
bute names 1222, attribute values 1224, and parameters
1226. The user may click the “Add to Script” button 1228 to
add a module to the script.

The MSD 106 updates the list of suggested modules based
on the last module in the script. If the script has no modules,
the MSD 106 may provide a list of the most popular modules
to be used as the first step in the script. For example, the
MSD 106 may suggest a popular first module such as “Log
in to App.” If one or more modules are in the script, the MSD
106 may suggest popular modules that follow the last
module listed in the script. The MSD 106 may add the user
selected module from the list of suggested modules to the
script, and display the details of the selected module to the
user for review and modification. The details may include,
for example, the steps in a given module, the attributes for
that module and the module’s parameters. Attributes can be
hidden to allow more space to review the steps. After
reviewing the details, the tester can add the selected module
to the test script by clicking “Add to Script”. The details of
each step in the current script may be shown in a pane, such
as a Current Script pane 1202, for the tester to view the
entire script as the tester progresses. After the tester adds the
selected module to the script, the MSD 106 may update the
suggested module panes to show the most likely next steps,
or modules, in the script. The MSD 106 may determine,
based on the order of modules in other existing scripts,
which modules are commonly added after the selected
module. The MSD 106 allows the tester to develop the script
by adding modules to the script, changing the order of
modules in the Current Script pane 1202, or removing
modules from the Current Script pane 1202.

On the Input/Output tab 1108, the MSD 106 may display
a list of all input/put parameters associated with the test
script. The tester may amend the source for the input/output
parameters by selecting a parameter to change. For example,
the tester may change an input parameter to a fixed value.
Fixed values are entered directly into the “Value” field and
are stored with the script. Alternatively, the user may change
the source of the input parameter to “User Defined.”

On the Finish tab 1110, the MSD 106 displays to the tester
a summary of the details for the test script. The MSD 106
may present the new module to the tester so that the tester
can add the new module to the current script. The user may
select one of their peers to review the script. When the script
is submitted for review, the MSD 106 triggers an approval
workflow to ensure that modules of the script are not
incorrectly created. The user may also browse the test tool
to decide where to store the script that has been developed.
The MSD 106 allows the tester to add attachments to the
script and submit the script for peer review. The MSD 106
may allow the tester to enter a reason for no review and
proceed with submitting the test script.

FIG. 13 shows a diagram of a Module Designer in an
embodiment of the MSD 106. When the tester chooses to

US 9,448,915 B2

13

create, edit or create a clone of a script, the MSD 106 may
display the Module Designer 1300. The Module Designer
may include a plurality of screens, or tabs, to guide the user
through creating a new module. The Module Designer 1300
may include a Details tab 1114, a Step Design tab 1320, and
a Finish tab 1330. The Details tab 1114 may prompt the
tester to enter a module name, names and values for module
attributes, a description of the module, and skills required to
execute the script and approve the module. The Module
Designer 1300 may provide a list of skills from which the
user may select the required skills for testing the module.

The Step Design tab 1320 may guide the tester through
adding steps to the module. The Step Design tab 1320 may
prompt the tester to input information regarding a descrip-
tion, parameters and expected results for each step in the
module. Parameters may be embedded in the steps using
notations, such as “>>>Input<<<” for inputs and “<<<Out-
put>>>" for output parameters. The list of parameters may
be updated as each step is entered. The user continues to
enter the expected result for the step and specify whether test
evidence should be captured for that step. This process is
repeated for the remaining steps in the module. The tester
may also insert steps and add steps using the Step Design tab
1320. The Finish tab 1330 may display to the user a module
summary page and allows the tester to submit the module,
save a draft of the module, add the module as a favorite, or
cancel creation of the module. A module saved as a draft
may not be added to any scripts.

An exemplary module may be a “View Billing” module
that allows a user to view information or details regarding
the user’s account. A test step for the “View Billing” module
may be “Click on the ‘Account Tab’,” for which the
expected result is “Account tab should open.” Another test
step may be “Click on the ‘Account Details’ link,” for which
the expected result is “Summarized account details should
be shown.” Another test step may be “Click ‘View more,”
for which the expected result is “All account details should
be displayed.”

In another embodiment of the MSD 106, a user interface
may include drop down menus to allow the user to input
other information about the script. For example, the user
may describe the likelihood of failure and impact of failure
for the script, and based on the user’s description, the system
may calculate a risk based testing score for the script. For
example, a user may select from among Low, Medium, High
and Very High drop down choices on a drop down menu for
“likelihood of failure” and from among Low, Medium, High
and Very High drop down choices on a drop down menu for
“impact of failure.” A configurable list of attributes is then
completed. These attributes can be directly linked to an
underlying test tool (e.g. HP QC fields).

In yet another embodiment, a tester may search for the
type of test data that will be required for the script. The user
may select test data that is required to execute the test, input
a description of the required test data, and input additional
comments about the data type. The user may input additional
comments about the specific configuration of the test data
required. For example, the user may specify “Customer must
have an open order.” The MSD 106 may further require the
tester to input certain data for the script. The required data
may include, for example, customer type (e.g., business or
consumer), address type, and product (e.g., landline, broad-
band, or mobile phone. The MSD 106 may require the tester
to input fewer, additional, or other data for the script.

FIG. 14 shows a conceptual diagram of an embodiment of
the NGT system 100. As shown in FIG. 14, the NGT system
100 may include a presentation layer 1410, a business

30

35

40

45

50

55

60

14

component layer 1420, an integration layer 118, and a data
layer 1440. The presentation layer 1410 includes user inter-
face (UI) components 1412 which render and format data for
display to users 1402, including project managers, testers,
and test leads, and acquire and validate data that users 1402
enter. The presentation layer 1410 also includes UI process
components 1414 that drive the process using separate user
process components to avoid hard coding the process flow
and state management logic in the Ul elements themselves.
The business components layer 1420 implements business
logic and workflow. The business components layer 1420
includes business components 1422 which implement the
business logic of the application. The business components
layer 1420 also includes business entities 1424 and business
workflow 1426. Business entities are data transfer objects in
the business components layer 1420. These are common
objects that can be used across the layers, including the
presentation layer 1410, to pass data around.

The integration layer 118 provides backend agnostic
access to the upstream layers (business components layer
1420 and presentation layer 1410), and enables plug-ability
via a common interface to one or more backend systems
such as QC, Rational and Team Foundation Server. Integra-
tion layer 118 implements the following design pattern: an
abstract base class inherits from ProvideBase (which is a
class available with Microsoft’s .Net framework); each
concrete implementer in turn inherits from the abstract class
above; Appropriated Provider (which may be an NGT
component that communicates with a backend system, such
as QC) is loaded based on type definition in a .config file.
The integration layer 118 also includes the integration
fagade. Integration fagade exposes a simplified interface to
the business components layer 1420, and reads data from a
combination of data transfer objects from one or more
backend repository or cache (R2) and merges them to a
common super data transfer object to return to the business
components layer 1420. Integration layer 118 also includes
NGT components 1434 which interface between the inte-
gration fagcade 1432 and the data layer 1440 and may provide
mapping functionality for the integration layer 118 if
required. The integration layer 118 also includes caching
components 1436 and testing tool components 1438. Testing
tool components 1438 are providers servicing requests for
data read/write from a Testing Tool 1404.

The data layer 1440 includes data access components
1442 which centralize the logic necessary to access under-
lying NGT data store, exposing methods to allow easier and
transparent access to the database. It also includes data
helper/utilities 1444 which are used to centralizing generic
data access functionality such as managing database con-
nections. The data layer 1440 also includes service agents
1436 which provide Windows Communication Foundation
services proxy for talking to application server services. The
data layer 1440 may be an Enterprise Library Data Access
Application Block or a custom designed data layer. Alter-
natively, object relational mapping tools, such as Entity
Spaces (available from EntitySpaces, LLP), Genome (avail-
able from TechTalk, GmbH), LINQ-to-SQL (available from
Microsoft Corporation), Entity Framework (also available
from Microsoft Corporation), or LLBLGen Pro (available
from Solutions Design), may be used to generate the data
layer 1440 components.

Cross cutting functions 1405 in the NGT 100 may
include, for example, security, exceptions handling, locking,
and communication. The NGT 100 may also include a local
cache 1406. Outputs from the NGT 100 may include, for
example, email functionality 1407 or other information

US 9,448,915 B2

15

communication functionality. Emails may include notifica-
tions to testers regarding script rejection or approval, noti-
fications to approvers regarding scripts that are ready for
review, and notifications regarding security concerns, sys-
tem exceptions, and auditing. The NGT 100 may also
communicate information to testing tool 130 and an NGT
database 150.

FIG. 15 shows a logical diagram of an embodiment of the
NGT system 100. In the embodiment, the presentation layer
1410 may include a plurality of Ul components 1412 and Ul
processes 1414, including an administration interface 1511,
an execution toolbar 1512, a script module designer 1513, a
unified desktop 102, a defect tracking interface 1514, KPI
views 1515, and an approval review interface 1516. The
business components layer 1420 may include a plurality of
components, including a user profile component 1521, a
search services component 1522, a workflow services com-
ponent 1523, a business rules component 1524, a time
keeping component 1525, an authorisation component 1526,
and an authentication component 1527. The integration
layer 118 may include an integration fagade 1432, which
may include aggregation 1531, integration APIs 1532, and
decomposition 1533. The integration layer 118 may also
include providers 1534, caching 1535, and data transforma-
tion 1535. The data layer 1440 may provide access to a data
provider 1541, data helper/utilities 1542, and data services
API 1543.

The MSD 106 may have a centralized workflow system
for approving/rejecting modules and scripts. When a module
is created or modified, the MSD 106 notifies an approver to
review the module. The approver may choose to approve the
module to be used in all scripts, for a subset of scripts, or for
a single script.

When the approver approves a module change for all
scripts, the MSD 106 sets the status indicator of the module
to approved for use. The new version of the module is
updated against all scripts containing the previous version of
the module. If the approver indicates that the test scripts will
require review after the update, MSD 106 sets the status
indicator of the script to pending review.

When the approver approves a module change for a subset
of scripts, the MSD 106 prompts the user to enter a new
name for the module, and clones the module by creating a
new module identifier, linking the new module to the exist-
ing module, and setting the status indicator of the new
module to approved for use. The MSD 106 associates, or
adds, the new cloned module to the subset of scripts selected
by the approver. The approver may choose whether the
scripts require review following addition of the new module
to the selected subset of scripts.

When the approver rejects a module, the MSD 106
prompts the approver to enter a reason for rejection, marks
the module as rejected, and allows the approver to suggest
a replacement module to the testers. Then, the MSD 106
sends a notification, for example, by email, to the tester to
notify the tester that the module is rejected. Then, the MSD
106 may allow the tester to update and resubmit the module,
or remove the module from the script.

The MSD 106 also provides a script approval process.
When a new script is created, the MSD 106 sets the status
indicator of the new script to pending review. The MSD 106
assigns a reviewer to review the script. When the reviewer
approves the script, the MSD 106 sets the status indicator of
the script to ready for test if all modules in the script are
approved for use. If some of the modules in the script are
pending approval, the MSD 106 may set the status indicator
of the script to pending module approval.

25

40

45

50

16

When a script is updated, the person updating the script
may indicate whether the script requires review and the
MSD 106 sets the status indicator of the script to pending
review. Then, the MSD 106 sends notification to the
reviewer to review the script. If the reviewer approves the
script, the MSD 106 sets the status indicator of the script to
ready for test if all modules in the script are approved for
use. If some of the modules are still pending approval, the
MSD 106 sets the status indicator of the script to pending
module approval, until all modules in the script are approved
for use. If the person updating the script indicates that the
script does not require review, the MSD 106 sets the status
indicator of the script to ready for test if all modules in the
script are approved for use. If some of the modules are still
pending approval, the MSD 106 sets the status indicator of
the script to pending module approval, until all modules in
the script are approved for use.

FIG. 16 is a high-level hardware block diagram of another
embodiment of the NGT system. The NGT system 100 and
its key components 104, 106, 108, 114, 116, 120, and 110
may be embodied as a system cooperating with computer
hardware components, such as a processing device 428,
and/or as computer-implemented methods. The NGT system
100 may include a plurality of software components or
subsystems. The components or subsystems, such as the test
planning tool 104, the modular script designer 106, the
prioritization and assignment manager 112, the test execu-
tion toolbar 108, the automation controller 114, the test data
supply chain 116, the reporting portal 120, and/or the defect
management tool 110, may be implemented in hardware,
software, firmware, or any combination of hardware, soft-
ware, and firmware, and may or may not reside within a
single physical or logical space. For example, the modules
or subsystems referred to in this document and which may
or may not be shown in the drawings, may be remotely
located from each other and may be coupled by a commu-
nication network.

The logic, circuitry, and processing described above may
be encoded in a computer-readable medium such as a
CDROM, disk, flash memory, RAM or ROM, an electro-
magnetic signal, or other machine-readable medium as
instructions for execution by a processor. Alternatively or
additionally, the logic may be implemented as analog or
digital logic using hardware, such as one or more integrated
circuits, or one Or more processors executing instructions; or
in software in an application programming interface (API)
or in a Dynamic Link Library (DLL), functions available in
a shared memory or defined as local or remote procedure
calls; or as a combination of hardware and software.

The logic may be represented in (e.g., stored on or in) a
computer-readable medium, machine-readable medium,
propagated-signal medium, and/or signal-bearing medium.
The media may comprise any device that contains, stores,
communicates, propagates, or transports executable instruc-
tions for use by or in connection with an instruction execut-
able system, apparatus, or device. The machine-readable
medium may selectively be, but is not limited to, an elec-
tronic, magnetic, optical, electromagnetic, or infrared signal
or a semiconductor system, apparatus, device, or propaga-
tion medium. A non-exhaustive list of examples of a
machine-readable medium includes: a magnetic or optical
disk, a volatile memory such as a Random Access Memory
“RAM,” a Read-Only Memory “ROM,” an Erasable Pro-
grammable Read-Only Memory (i.e., EPROM) or Flash
memory, or an optical fiber. A machine-readable medium
may also include a tangible medium upon which executable
instructions are printed, as the logic may be electronically

US 9,448,915 B2

17

stored as an image or in another format (e.g., through an
optical scan) and then compiled and/or interpreted or oth-
erwise processed. The processed medium may then be stored
in a computer and/or machine memory.

The systems may include additional or different logic and
may be implemented in many different ways. A controller
may be implemented as a microprocessor, microcontroller,
application specific integrated circuit (ASIC), discrete logic,
or a combination of other types of circuits or logic. Simi-
larly, memories may be DRAM, SRAM, Flash, or other
types of memory. Parameters (e.g., conditions and thresh-
olds) and other data structures may be separately stored and
managed, may be incorporated into a single memory or
database, or may be logically and physically organized in
many different ways. Programs and instruction sets may be
parts of a single program, separate programs, or distributed
across several memories and processors.

While various embodiments of the invention have been
described, it will be apparent to those of ordinary skill in the
art that many more embodiments and implementations are
possible within the scope of the invention. Accordingly, the
invention is not to be restricted except in light of the attached
claims and their equivalents.

We claim:

1. A method for modular script design, comprising:

receiving, at a modular script designer component, script

information for a modular script, where the script
information comprises user submitted script informa-
tion;

determining that the modular script is empty of modules;

providing a list of popular first modules responsive to

determining that the modular script is empty of mod-
ules;

receiving a selection of a selected first module from the

list of popular first modules;

including the selected first module as a first module of the

modular script;

determining a last module listed in the modular script;

generating a list of suggested next modules based on the

last module listed in the modular script responsive to
determining the last module listed in the modular
script, the generating including determining a com-
monly added next module that commonly follows the
last module by analyzing a database comprising a
plurality of modules and a plurality of scripts and
including the commonly added next module in the list
of suggested next modules;

receiving, at the modular script designer component, a

selection of a selected next module from a user, the

selection of the selected next module comprising:

selecting the selected next module from among the list
of the suggested next modules or a request to create
a new module; and

generating the new module if the selection of the
selected next module includes the request to create
the new module;

receiving, from the user, a modification to the new
module;

obtaining manual approval of the modification from an
approver, the approver being a peer of the user,
where the obtained manual approval of the modifi-
cation corresponds to a subset of the plurality of
scripts; and

adding the selected next module to the modular script
as a new last module listed in the script.

2. The method of claim 1, wherein generating the new
module comprises:

10

15

25

30

35

40

45

50

55

60

65

18

receiving new module information from the user, and

generating the new module based on the new module

information; and

the method further comprises:

obtaining approval of the new module from the approver,

and

updating, when approval is obtained from the approver,

the database to include the new module.

3. The method of claim 1, wherein the user submitted
script information further comprises test step information,
expected result information, required tester skill informa-
tion, and required data type information.

4. The method of claim 1, wherein generating the new
module comprises:

receiving a selection of a stored module from the user,

generating the new module by cloning the selected stored

module and editing the cloned selected stored module;
and

the method further comprises:

obtaining approval of the new module from the approver,

and

updating, when approval is obtained from the approver,

the database to include the new module.

5. The method of claim 1, wherein the new module
information comprises:

required tester skill information, and

the approver is selected based on skills of the approver

and the required tester skill information.

6. A method for modular script design comprising:

receiving, at a modular script designer component, script

information for a modular script from a user, where the
script information comprises user submitted script
information;

analyzing a database including a plurality of modules and

a plurality of scripts to determine a list of popular first
modules based on the script information, and display-
ing the list of popular first modules to the user;

receiving, at the modular script designer component, a

selection of a selected first module from the user, where
the selected first module is selected from among the list
of the popular first modules;

adding the selected first module to the modular script;

determining a last module listed in the modular script;

generating a list of suggested next modules based on the
last module listed in the modular script responsive to
determining the last module listed in the modular
script, wherein the generating includes the modular
script designer component determining a commonly
added next module that commonly follows the last
module, based on the order of modules in other existing
scripts, and displaying the list of suggested next mod-
ules to the user;

receiving, at the modular script designer component, a

selection of a selected next module from the user, the

selection of the selected next module comprising:

selecting the selected next module from among the list
of suggested next modules or a request to create a
new module;

generating the new module if the selection of the selected

next module includes the request to create the new
module;

receiving, from the user, a modification to the new mod-

ule;

obtaining manual approval of the modification from an

approver, the approver being a peer of the user, where
the obtained manual approval of the modification cor-
responds to a subset of the plurality of scripts; and

US 9,448,915 B2

19

adding the selected next module to the modular script as
a new last module listed in the script.

7. The method of claim 6, wherein the user submitted
script information comprises test step information, expected
result information, required tester skill information, and
required data type information.

8. The method of claim 6, wherein

generating the new module comprises:

receiving new module information from the user, and
generating the new module based on the new module
information; and

the method further comprises:

obtaining approval of the new module from the
approver, the approver being selected based on skills
of the approver and the required tester skill infor-
mation, and

updating, when approval is obtained from the approver,
the database to include the new module.

9. The method of claim 6, wherein

generating the new module comprises:

receiving a selection of a stored module from the user,
and

generating the new module by cloning the selected
stored module and editing the cloned selected stored
module; and

the method further comprises:

obtaining approval of the new module from the
approver, and

updating, when approval is obtained from the approver,
the database to include the new module.

10. A system for modular script design, comprising:

a computer processor; and

a memory in communication with the computer processor,

the memory comprising logic for a modular script

designer component, where the logic when executed by

the computer processor causes the computer processor

to:

receive, at the modular script designer component,
script information for a modular script from a user,
where the script information comprises user submit-
ted script information;

determine that the modular script is empty of modules;

provide a list of popular first modules responsive to
determining that the modular script is empty of
modules;

receive a selection of a selected first module from the
list of popular first modules;

include the selected first module as a first module of the
modular script;

determine a last module listed in the modular script;

generate a list of suggested next modules based on the
last module listed in the modular script responsive to
determining the last module listed in the modular
script, the generating including determining a com-
monly added next module that commonly follows
the last module by analyzing a database comprising

20

25

30

40

45

50

55

20

a plurality of modules and a plurality of scripts and
including the commonly added next module in the
list of suggested next modules;
receive, at the modular script designer component, a
selection of a selected next module from the user, the
selection of the selected next module comprising:
selecting the selected next module from among the
list of suggested modules or requesting the cre-
ation of a new module;
generate the new module if the selection of the selected
next module comprises the request to create the new
module;
receive from the user, a modification to the new mod-
ule;
obtain manual approval of the modification from an
approver, the approver being a peer of the user; and
add the selected next module to the modular script as a
new last module listed in the script.

11. The system of claim 10, further comprising:

receiving, from the user, a modification to the new mod-

ule;

obtaining approval of the modification from the approver,

where the obtained approval of the modification is for
a subset of the plurality of scripts;

updating the subset of the plurality of scripts to include

the approved modification.

12. The system of claim 10, wherein generating the new
module comprises:

receiving new module information from the user, and

generating the new module based on the new module

information;

obtaining approval of the new module from the approver,

and

updating, when approval is obtained from the approver,

the database to include the new module.

13. The system of claim 10, wherein the user submitted
script information comprises test step information, expected
result information, required tester skill information, and
required data type information.

14. The system of claim 10, wherein

generating the new module comprises:

receiving a selection of a stored module from the user,
and

generating the new module by cloning the selected
stored module and editing the cloned selected stored
module;

obtaining approval of the new module from the
approver, and

updating, when approval is obtained from the approver,
the database to include the new module.

15. The system of claim 12, wherein the new module
information comprises:

required tester skill information, and

the approver is selected based on skills of the approver

and the required tester skill information.

#* #* #* #* #*

